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Abstract - -A reexaminat ion of Blot's internal instability analysis, including the effects of bending resistance and 
nonlinear material  properties,  shows that internal buckling and oblique localized shearing into bands are the two 
end -member  processes associated with internal instability. The first is a consequence of a high anisotropy which 
is an intrinsic property of the original unstressed layering or foliation. The second is a consequence of a highly 
anisotropic material response to perturbat ions which is induced during the initial uniform compression if material 
properties are nonlinear.  The incremental  anisotropy generating the instability is associated with planes of least 
resistance to shearing in directions parallel to the initial compression in the first case and at 45 ° to the initial 
compression in the second case. 

INTRODUCTION 

THE DEVELOPMENT of internal structures in deformed 
anisotropic rocks was the subject of a detailed investiga- 
tion by Cobbold et al. (1971). These authors considered 
the formation of a variety of natural structures including 
kink bands and 8inusoidal folds in rocks as diverse as 
turbidite sequences, banded gneisses, slates and schists. 
Their  treatment of the mechanics involved in the forma- 
tion of these structures was founded upon a mathemati- 
cal analysis proposed by Biot (1965, pp. 192-204) who 
argued that the deformation behaviour of composite 
foliated rocks can be analysed and discussed in terms of 
their average rheological properties. It is through the 
various applications of Blot's analysis (Johnson 1970, 
Cobbold et al. 1971, Sowers 1973, Cosgrove 1976) that 
structural geologists have obtained a mechanical under- 
standing of many structures common to foliated rocks. 

Some investigations concerned more specifically with 
the folding of multilayers have developed upon quite 
different lines; by considering each layer as a discrete 
unit. For example, Ramberg (1970) illustrated in detail 
an analysis in which displacements and stresses at each 
layer interface were matched to give the sinusoidal 
solution for the deflection of each interface, a more 
exact approach but one for which the outcome of layer 
parallel contraction is restricted to folding. The present 
paper builds upon Biot's mathematical analysis and 
reveals the deeper  implications for instability and thus 
for structure development,  during the deformation of a 
rigidly confined block of material. 

It is widely recognized that Biot's analysis is applicable 
to materials which have an intrinsic anisotropy (i.e. 
those which have an anisotropy when the material is free 
of stress) such as well laminated or foliated rocks, and 
can explain the development of internal buckle folds in 
these materials. However ,  the analysis can also be 
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applied to nonlinear isotropic materials and thereby 
provide an explanation for the production of localized 
shear bands or even discrete shear-failure surfaces in 
some granites and massive sandstones. The conse- 
quences of nonlinear material properties leading to 
induced anisotropy have been largely neglected in in- 
stability analyses. Thus kinking, a localized phenome- 
non, is inadequately explained using an internal instabil- 
ity analysis for linear materials. 

The problems that previous workers have encoun- 
tered when attempting interpretations of Blot's analysis 
can be traced to two geologically unrealistic assumptions 
built into the analysis. (1) The analysis assumes that the 
resistance to bending of the material is negligible. This 
will not be so for real geological materials made up of 
individual layers or fabric elements. (2) It is assumed 
that the material is linear. It is known however, that 
nonlinear material behaviour is important in the defor- 
mation of rocks and, as will be shown, can have a 
profound effect on the degree to which an incrementally 
anisotropic response is induced. The instability analysis 
presented in this paper takes into account the bending 
resistance of the material and the nonlinear material 
properties. 

To begin the analysis, an example of constitutive 
relations applicable to Blot's theories for "anisotropic 
elastic" materials is described. One specific example, a 
power-law elastic model,  is chosen to illustrate the most 
important mechanical effects of nonlinear properties, 
effects that are probably typical of many elastic-plastic 
strain-hardening rocks. Next, the effective modulus 
equations are derived for a simple bilaminate consisting 
of layers with properties described by the power-law 
elastic model. These equations define the mechanical 
properties of a homogeneous anisotropic continuum 
and are equivalent to the average properties of the 
nonlinear bilaminate multilayer. An expression for the 
average bending resistance of such a multilayer yields a 
bending coefficient which takes into account the number 
of layers in the confined multilayer. This coefficient, 
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when added to the characteristic equation for internal 
instability, completes the groundwork for the new 
analysis. Solutions for the dominant characteristic direc- 
tion for shearing are derived and presented graphically 
in terms of the degree of incremental anisotropy and the 
bending coefficient. The closing section is a general 
discussion around the central conclusion, that pervasive 
internal buckl ing and oblique localized shearing are the 
pure end-member  types of internal instability. This con- 
clusion differs from that reached by Cobbold et al. 
(1971) where kinking was considered to be a pure end- 
member  of internal instability. 

CONSTITUTIVE RELATIONS 

Incompressible t ime-independent materials which are 
initially homogeneous and orthotropic (possibly iso- 
tropic) with respect to fixed reference co-ordinate direc- 
tions x, y, z in some ground state are considered. The 
subsequent deformation is plane strain with in-plane 
loading parallel to the x and y directions. The material 
considered in this paper has a strain energy density, W, 
defined as a function of the maximum principal stretch 
At = 1/A2 = A, or equivalently the maximum principal 
logarithmic strain, e = In A. The material deforms 
homogeneously with principal stretches A and 1/A up to 
the point of instability or bifurcation. The finite stress/ 
strain relation can be written 

AdW dW 
S x ~ -  S ~ y -  dA - d e '  (1) 

where Sxx and Syy are the direct initial stresses acting in 
the x and y directions and Sxy = 0. Biot (1965, p. 101) 
showed that the incremental stress/strain equations 
would take the following form 

sit - s = 2Nexx 
$22 - -  S = 2Neyy (2) 

s = 2Qex~, 

where s = ½(sll + $22) and sll, s22, s12 (=s2t) are the 
incremental components of the Cauchy stress tensor 
referred to orthogonal axes (1, 2) rotated by the same 
amount  as the local material has rotated; e~ and exy are 
the infinitesimal strain components.  The incremental 
stiffness moduli are 

4 N  = h d (Sxx - S y y )  
d2W 

= d e  2 (3) 

h 4 + l  
2Q - A4 _ 1 (S~ - Syv) = (S.,~ - Syy) coth (2e). (4) 

In (3), 4N is the tangent modulus for an in-plane 
uniaxial tension or compression test along x or y. Rela- 
tion (4), derived by Biot (1965, p. 93) shows that the 
shear modulus Q can be expressed as a function of the 
initial stress Sx~ - Syy and strain e alone, whereas N 
cannot. Nis a typical incremental coefficient in the sense 
that, for a stress/strain plot of a pure shear, the incre- 
mental modulus N, is given by the local slope of the 

curve at any prescribed stress or strain whereas Q has no 
obvious relationship with this curve. 

This revelation, that the local slope of the stress/strain 
curve governs only one of the incremental moduli, will 
be seen to have important consequences for isotropic 
solids with finite stress/strain behaviour which is non- 
linear. This is because the incremental stress/strain 
behaviour governed by (2) i.e. the material response to 
non-uniform deformation,  can have significant aniso- 
tropy induced (N # Q) during the uniform straining. 
This will now be illustrated using a nonlinear elastic 
isotropic constitutive model of the type investigated by 
Hutchinson & Tvergaard (1981). The model, though 
elastic, has often proved more successful at predicting 
critical conditions in buckling and necking problems in 
metals than equivalent models based on flow theories of 
plasticity. 

Power- law elastic solid 

The specific power-law model has the following strain 
energy function in plane strain 

k e r n +  1 

W - m +  1' (5) 

where m is a 'hardening' exponent which falls in the 
range 0 < m ~< 1 and k is the linear stiffness coefficient. 
In plane strain tension Sxx = P, S~.y = 0 (or in compression 
where e is taken as negative, Sx., = - P ,  Syy = 0). From 
(1), (3), (4) and (5), the initial stress and incremental 
moduli become 

P = ke '~ (6) 
Q = ¼kqem i N =  ¼kme m-t (7) 

where 
q(e) = 2e coth 2e. (8) 

In order  to facilitate a simplified analysis of multilayer 
behaviour under initial stresses, Biot's (1965) alternative 
formulation for incremental stresses will now be intro- 
duced. The alternative stress components tt~, t22, t~2 
(#t~l) refer forces to initial areas and to locally rotated 
axes (1, 2). (The nonsymmetric Biot stress tensor t' to 
which these alternative stress components belong is 
obtained from the First Piola-Kirchhoff stress tensor p 
by forming the scalar product p . R  where R is the 
orthogonal rotation tensor). The stress/strain equations 
for the components ti1, t22 and t't2 can be expressed as 

tll - t22 = 4Mex~ (9) 
ti2 = 2Le , .  

with moduli 

L =  Q + P/2, M =  N + P/4. (10) 

The physical significance of these moduli has been 
discussed by Biot (1965, pp. 86 and 138). Using (6), (7), 
(8) and (10), L and M become 

L = -~ ~ kern + 1 (11) 

for the power-law elastic material. 
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Fig. 1. The Idealised Multilayer Model (I.M.M) and its equivalent Anisotropic Continuum (A.C.) and representative 
Fundamental Element (F.E.). See text for details. 

For 0.2 ~< m ~< 1 and e ~< 0.1, 

M 
- - - ~  m .  ( 1 2 )  
L 

This approximation is valid to within a factor of 0.25 over 
the quoted range o fm and e (see Latham 1983, table 2.1). 

From these mathematical developments [equations 
(5)-(12)] it may be concluded that an intrinsically iso- 
tropic material will have an incrementally anisotropic 
response when the stress/strain behaviour is nonlinear 
( m ¢  1 in the quoted power law). Blot (1965, p. 89) used 
the term "induced incremental or thotropy" (anisotropy) 
to describe this effect. As suggested by (12), the mag- 
nitude of the induced anisotropy is intimately related to 
the hardening exponent  for a power-law material. 

EFFECTIVE MODULUS EQUATIONS 

These will be used to describe the average material 
properties of the Idealized Multilayer Model (I .M.M.,  
Fig. 1) under initial stress. 

Biot (1965, pp. 184-191), seeking a simplified stability 
analysis for multilayered media, considered how and to 
what extent a discretely laminated medium could be 
treated mechanically as though it were a homogeneous 
and anisotropic continuum. Biot's t reatment of the prob- 
lem uses what is known as an effective modulus theory 
(see Ting 1980, for a review of theories of composites). 
It is similar to that given by Postma (1955) although 
Biot's equations considered the laminated medium to be 
under initial stress and are therefore more useful for 
analysing static buckling behaviour in contrast to 
dynamic stability problems. The effective moduli that 
describe the average behaviour of a periodic bilaminate, 
given by equations (14) and (15) below, provide the 
essential link between many of Biot's theories of buck- 
ling and their applications to structural geology, particu- 
larly problems of folding (e.g. Biot 1964, 1965a,b,c, 
1967, Johnson 1970, 1977, Cobbold etal. 1971, Summers 
1979, Williams 1980). 

The effective modulus equations which describe the 
average constitutive response of the smallest typical 
element (Fig. lc) of the stressed I.M.M. (Fig. lb) are 
(Blot 1965, 1967) 

P = Plal  + P2a2 (13) 
M = Mlal  + M2o~2 (14) 

L - LIL2 (15) 
o~1 L~, + a'2L 1 

hi h-, 
a 1 - ~ :  - ~ ( 1 6 )  

hi + hi '  h[ + h~_ 

given the following definitions and restrictions. 
(1) The alternating layers labelled 1 and 2 are 

homogeneous,  incompressible, elastic and have inter- 
faces which are coherent  and parallel to any plane of 
orthotropic symmetry that may exist within each of the 
materials should they not be isotropic. 

(2) Layers of thickness hi and incremental elastic 
moduli Ml, Ll alternate with layers of thicknesses h2 and 
moduli M2, L2. 

(3) The initial stresses are oriented with principal 
directions along x and y (i.e. S~,. = 0). The effective 
compressive initial stresses (Sy,. - S~.,) within layers 1 
and 2 are PI and P2, respectively. 

(4) The parameters cq and a2 are termed the fractional 
thicknesses as they represent the fraction of the total 
thickness occupied by each material, (al + a2 = 1). 

(5) The characteristic wavelength of any perturbations 
in the displacement field that develops in the composite 
material is much larger than the lamination thickness so 
that the state of stress and strain may be assumed 
constant within each layer of the fundamental element. 

Blot's derivation of (14) and (15) is via the incremental 
stress components tll, t22 and t'12 which are by definition 
linearly related to the incremental strain components 
exx, eyy and exy for incrementally linear t ime-independent 
materials. In obtaining (15) he used the important result 
that the same incremental shear stress ti2 acts upon each 
layer interface of the fundamental element and through- 
out the composite (Fig. 3), whereas the component s[2 is 
not the same within each layer. Replacing the L's by Q's 
in (I5) would therefore give an incorrect average shear 
modulus Q, whilst replacing the M's by N's would still 
give a valid equation for the average direct modulus, N, 
as both t22 and s22 are the same within each layer. Note 
that incompressibility ensures that c~ = h~/(h'l + h ' )  in 
Fig. 3. 

The unusual decomposition (see Biot 1973, appendix) 
of the incremental deformation shown in an exaggerated 
form in Fig. 2 is valid for infinitesimal strains exx, evy, e~y 
and an infinitesimal rigid body rotation. The deforma- 
tion states shown in Fig. 2 correspond to (a) uniform 
(finite) shortening just prior to the onset of non-uniform 
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Fig. 2. Deformat ion states assumed for the general  deformation of the Fundamenta l  Element .  See text for discussion. 

deformation; (b) that part of the incremental deforma- 
tion which is due to physical internal straining of the 
material and assumed to be equivalent to a superposed 
pure shear and simple shear (in either order) both 
parallel to the layer boundary, and (c) the total deforma- 
tion, as in (b) but with the added geometric effect of the 
local rigid-body rotation Ov/Ox of both the material and 
the entire stress field acting upon it. 

From substitution of the power-law elastic model for 
the material properties of layers 1 and 2 of the I.M.M., 
the effective moduli describing the average anisotropic 
response of the fundamental element may be deter- 
mined from (10), (11), (13), (14) and (15) as 

1 k [k~em'+m2(q/e + 2)] 
L = ~ 2]. ~ T ~e~-'a-2 ]" (17) 

M =  k2 kr Em' + 1 oq + e 2 ~  + 1 a2 • 

The differential initial stress P is given by 

P =  k2(krEm, al + em'a2) (19) 

y 
t '  12) 12 

!,2--L---';'-/ 
I / t' (1) / + ~ 12... / 

hl (11 

I 121 t~ (1) / 

Interface 

ELement 
Boundary 

Fig. 3. Interface incremental  shear  stresses acting on the layers of the 
Fundamenta l  Element.  

and the subscripts refer the parameters to layers 1 and 2. 
In the stability analysis which follows, it is the ratio kr = 
kl/k2 rather than the absolute values of k which is 
significant. 

It is important to emphasize the scope afforded by 
these effective modulus equations. The significance of 
the ratio M/L,  that is, the incremental anisotropy of an 
anisotropic continuum [given by (17) and (18)], lies in its 
application to many of Biot's theories of instability in 
multilayers. It is now clear that the incremental aniso- 
tropy M/L in multilayers with nonlinear material proper- 
ties considered above includes both the influence of 
intrinsic anisotropy (that may be loosely associated with 
'competence contrast') and the influence of the induced 
anisotropy from within each layer. An initially isotropic 
relationship between incremental stresses and strains 
within individual layers becomes increasingly aniso- 
tropic while the deviatoric state of the initial stress builds 
up as a direct result of the nonlinearity of the material in 
that layer. The initial stress is said to induce a material 
response which is incrementally anisotropic, a physical 
effect which is discussed briefly at the end of this paper. 
Biot's analyses of stability in anisotropic media (Blot 
1965, Chapter 4) which are designed to cope with incre- 
mentally anisotropic material responses are independent 
of the source of the incremental anisotropy. As pointed 
out by Sowers (1973), it may be intrinsic, induced, or a 
combination of both. 

It should be noted that equations (17), (18) and (19) 
are only applicable to elastic-plastic deformations up to 
the point of incipient instability. The parallelism of the 
orthotropic symmetry in the total stress field and in the 
material properties breaks down soon after this point of 
instability develops. 

Some valuable insights can be gained by applying the 



Development  of internal structures 229 

02 iiiiii ii  ! 

1 0 - 2  ~ . . . . .  L ~ , , , J , b , I  , , , i , , , ,  

1 0 o  1 0 1  1 0  2 1 0  3 

Fig. 4. Approximate representation of Incremental Anisotropy, M/L,  
as a function of shear modulus ratio (competence contrast), QI/Q2, 
and average nonlinearity, n, of the material properties in each layer, 
for multilayers with a constant thickness ratio a] = 0.5 and identical 
stress exponents in each layer (i.e. 1/m] = 1/m 2 = n). The line M/L = 
0.5 (=10 -°'3) separates the fields for first-kind and second-kind insta- 

bility. 

approximation (12) for the properties of each layer. 
Further,  if each layer has an identical stress exponent  n 
(=l/m1 = 1/m2), then there are two useful plots (Figs. 4 
and 5) for M/L vs shear modulus ratio or 'competence 
contrast'  Q1/Q2 ( =  kr for these conditions). 

In Fig. 4, the layers have equal thicknesses (al = 0.5) 
and the plot indicates that for increasingly nonlinear 
material properties (higher n values), the incremental 
anisotropy takes progressively lower values. Just as 
incremental anisotropy is induced when n > 1 for a 
homogeneous isotropic material, i.e. when kr = 1, so too 
is incremental anisotropy induced in the average proper- 
ties of a multilayer (k, ¢ 1) for n > 1. Nevertheless, a 
large ratio k, which is generally associated with intrinsic 
anisotropy will usually overshadow the effect of induced 
anisotropy giving an average incremental anisotropy of 
the multilayer, M/L, which is greater than 0.5. 

If al is increased so that the layers have unequal 
thicknesses, M/L is lowered. This is demonstrated for a 
value of n = 3 in Fig. 5. In interpreting Figs. 4 and 5, it 
should be recognized that the full complexity of the 
strain dependence of equations (17) and (18) is not 
represented but will be accounted for in a numerical 
analysis to follow in a companion paper. 

R E S I S T A N C E  T O  B E N D I N G  

For anisotropic media comprising fine-scale alterna- 
tions of layers of differing incremental moduli, Biot 
(1967) calculated an approximation for the resistance to 
bending representative of the fundamental element,  due 
to its fine layered structure 

When a material exhibits incremental anisotropy (i. e. 
M ~ L), the effect of a resistance to bending may be 
represented by a couple ./# per unit area acting on a 
surface initially perpendicular to the reference x-direc- 

,o21 

1 0  t 

--J 

\ 1o ° 

1 0  - t  

' ' i 

/ / /  

j / -  ~ /  
/ / ~ /  / 

1 0  . 2  . . . . .  i i , , i . . . .  
1 0  0 1 0  ~ 1 0  2 1 0  3 

Fig. 5. Approximate representation of Incremental Anisotropy, M/L,  
as a function of shear modulus ratio (competence contrast), Q1/Q:, for 
different thickness ratios and a constant stress exponent n (= 1/m~ = 

1/m2) of 3. 

tion (see Fig. 6). The value of this stress couple is 
assumed to be proportional to the curvature acquired by 
fibres of the medium initially parallel to the x-direction. 
Hence Biot expressed 

b a2v 
- ( 2 0 )  "~/ 0X2 ' 

where, for a displacement v in the y-direction, 02v/0x 2 is 
a good approximation to the curvature for slopes of less 
than about 10 or 20 ° (see Johnson 1970, for details of this 
approximation to curvature). Biot called b the couple 
stress coefficient. It is a measure of the 'bending rigidity' 
of the medium. (In the example of a finite element of a 
thin elastic bending beam, it is related to the product of 
Young's modulus, E and the moment of inertia, I of the 
element).  

Biot (1967) stated that the presence of couple stresses 
implies non-symmetric shear stress components t~2 # t~l. 
However ,  the difference between these two stress com- 
ponents exists even when there is no internal resistance 
to bending. This non-symmetry follows from the con- 
dition that the total torque acting on the deformed 
element must be zero (Biot 1965, p. 61) whereas the 
stress components t~2 , t~l represents forces acting on an 
element of unit dimensions before deformation. The 
existence of a couple stresses imparts an additional 
degree of asymmetry as illustrated by the two terms on 
the R.H.S.  of the second of the equilibrium equations 
(22) below. 

Equilibrium of an element of the medium about an 
axis perpendicular to the page in Fig. 6 implies the 
moment  equation 

8.H 
' - ' - . ( 2 1 )  t12 t21 3x  

Equilibrium in the vertical direction (i.e. perpendicu- 
lar to x) yields the following equations for the stress 
components of t '  

S G  7 / 7 '  I: 
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Fig. 6. Physical interpretation of equilibrium of moments, see equation 
(21) (after Blot 1967). 

Otu + ate2 = 0 
Ox Oy 

Ot[2 + 0t22 _ p O 2 v  + 02~¢[ (22) 
Ox Oy Ox 2 Ox 2 " 

The bending resistance introduces a term of fourth 
order in Ov/Ox into these equilibrium equations. (The 
equivalent term may be introduced into the variational 
principle expression for the energy density, see Blot 
1967, 1974). 

Assuming a sinusoidal solution for the displacement v 
in equation (20), Blot (1967) derived the following 
expression for the couple stress coefficient b of the 
fundamental element in Fig. l(c) 

4 h2(a~M ~ _ oflM2) (L__j- L 2 ) ~ 2  (23) 
b = ~ a l L 2  + o~2L1 

If layer (1) is much more 'competent '  than layer (2), i.e. 
if Ml >> M2, LI >> L2 equation (23) reduces to the 
approximation 

b ~hZM (24) = 3  I l" 

TYPES OF SOLUTIONS FOR THE 
DISPLACEMENT FIELD---DISCUSSION 

It has been shown from the theory developed so far, 
that the stress/strain equations (9) can be applied, as an 
approximation, to multilayers with effective moduli such 
as (17) and (18) as well as to homogeneous possibly 
nonlinear intrinsically isotropic materials. When com- 
bined with equilibrium equations, the resulting displace- 
ment field equations [e.g. equation (26)] have broader 
applications than those for which the two material 
moduli (e.g. M and L) refer to the behaviour of single 
component materials. Notice, for example, that by set- 
ting material constants of alternate layers to be equal, 
the exact single component material properties are also 
given by the effective moduli. 

Neglecting resistance .to bending within the funda- 
mental element (Fig. 1), the differential equation for the 
function 05 describing the non-uniform displacements, 
where u = 005/0y, v = -005/0x is (e.g. Blot 1965, Hill & 
Hutchinson 1975, Johnson 1980) 

Q / 2 N  (E) e l l i p t i c  

[E) / /  (P) pa rabo l i c  

(H) h y p e r b o l i c  

I . . . .  - - - - ~ -  - - - (P)-  . . . .  

1/2 ~ " "  ' 

I P/t. N 

Fig. 7. Instability (or bifurcation) regimes of equation (2~) as classitied 
by Hill & Hutchinson (1975). 

(Q - P/2) 0405 + 2(2N - Q) 0405 
Ox 4 Ox 2 ay 2 

+ (Q + P / 2 ) - -  0405= 0 (25) 
ay 4 

or in terms of the moduli M and L, this becomes 

(L - P) 0405 + 2(2M - L) a4----~& + L0405 - 0. (26) 
Ox 4 Ox 2 Oy 2 Oy 4 

Johnson (1980) considered a sinusoidal form for the 
general solution of the function 05 as he was concerned 
with the buckling of single layers with elastic-plastic 
strain hardening material properties. (See also Blot 
1965, p. 218.) 

An alternative form may be chosen for the general 
solution of the function 05. It is written 

05 =f1(x + sCly) +f2(x - ~,y)  + f~(x + ~2Y) + f4(x - sC2y). 
(27) 

Each function f~ to f4 is an analytic or non-analytic 
function of a heterogeneous simple shear parallel to 
planes along which x + ~y = constant, so that ~: is as- 
sociated with a direction making an angle 0 with y, where 
0 = tan- ~ ~. These are the characteristics or characteristic 
lines discussed by Johnson & Ellen (1974) and by several 
other workers. This choice for the function q5 leads to a 
simple classification of the solutions of (25) into three 
regimes depending upon the current values of N, Q and 
P. Substituting (27) into (25), the characteristic equation 
describing the onset of instability due to real and/or 
imaginary characteristics (i.e. heterogeneous simple 
shear displacement patterns) becomes 

(Q _ ½p)~:4 + 2(2N - Q)E2 + (Q + ½p) = o. (28) 

This equation (28) was classified by Hill & Hutchinson 
(1975) into elliptic, parabolic and hyperbolic regimes as 
shown in Fig. 7. 

In Fig. 7 (cf. Cobbold etal. 1971, fig. 2), the instability 
regimes (E), (P) and (H) each correspond to different 
types of non-uniform displacement fields that can 
develop in a material. The type which develops will 
depend on the current values of the stress difference P 
and the moduli N and Q. Subject to the restrictions 
N > 0, Q > 0, P > 0 these regimes are (Hill & Hutchin- 
son 1975) 

(E): no real ~, 2N > Q - ~/(Q2 _ p2/4 ) 

(P): 2real~:,  Q < P/2 
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(H): 4 r e a l s  c, 2 N <  Q - X / ( Q  2 -  p2/4). 

The (E/P) interface corresponds to Biot's condition 
for a vanishing small wavelength internal-buckling 
mode, a special degenerate case of what he calls First 
Kind Instability (Type 1 instability of Cobbold et al. 
1971). This occurs when the compressive differential 
stress P first meets the value of the slide modulus L 
(Biot's 'Shear Threshold'). The (E/H) interface corre- 
sponds to Biot's condition for Second Kind Instability 
(Type 2 instability of Cobbold et al. 1971) and occurs 
when P first meets 4(M/L)(L - M).  On (E/H), the four 
real roots represent heterogeneous simple shearing 
along characteristic directions +0(=tan 1 ~c), and they 
coincide in pairs. (Within (H) all the directions may be 
different.) 

Although Biot's analysis (1965) has been known to 
geologists for almost 20 years, certain fundamental 
points remain poorly understood. From a theoretical 
consideration of the anisotropic continuum analysis 
leading to (28), Biot's first kind and second kind 
instabilities are in fact equally 'localized' in the sense 
that they both involve real characteristics parallel to 
which there is heterogeneous simple sh¢ar. However, 
because an analysis producing instability in the (P) 
regime invariably applies to those statistically homo- 
geneous composite materials in which the bending of 
planar elements occurs, the sinusoidal waveform (i.e. 
the lowest harmonic) for the heterogeneous simple shear 
is the most apposite choice at low amplitudes. The 
propagation of this 'localized' waveform parallel to 
either or both characteristics, then leads to Biot's "Inter- 
nal Buckling". This is because the boundary conditions 
cause reflections and an interference pattern results. It 
appears instantaneous giving an equilibrium configura- 
tion only because the analysis is totally elastic. For real 
elastic-plastic materials, where the average bending 
resistance due to planar elements is significant, rapid 
propagation can be expected and instability in the (P) 
regime for confined materials will tend to produce perva- 
sive and repetitive rather than localized buckling distur- 
bances by a process of reflection. Consider now, the 
possibilities for less restrictive boundary conditions. 

The non-uniform modes of displacement associated 
with (E) (Fig. 7) are generally taken to be, although they 
need not necessarily be, sinusoidal. If they are sinu- 
soidal, they have an exponential decay in one direction. 
These modes are often referred to as diffuse modes as 
they do not permit localized simple shearing in bands. 
For example, in an unconfined layer or block of material, 
the change in equilibrium from a uniform shortening 
under compression to a non-uniform buckling or barrel- 
ling mode of displacement is a problem of instability 
involving a bifurcation into the (E) regime and it is 
solved not by seeking real characteristics for (25), but by 
seeking antisymmetric and symmetric sinusoidal solu- 
tions with exponential decay (see Biot 1965, pp. 204- 
213, Young 1976, Johnson 1980 and for similar analyses 
using nonlinear viscous fluids see Fletcher 1974, Smith 
1977). 

Johnson's (1980) analysis of  folding and faulting 

The conditions of instability that were investigated by 
Johnson (1980) (Fig. 7) correspond with layer-parallel 
compression of a single layer (of rock) within a non-rigid 
confining medium (of other rocks). Depending upon the 
boundary conditions at the layer interfaces and the 
material properties of the layer and confining medium, 
he argued that the layer folded when solutions of (28) 
were in the (E) or (P) regime. However, when boundary 
conditions strongly resisted the deflection of the layer 
interfaces, solutions of (28) moved into the (H) regime 
before fold amplification in the (E) and (P) regimes was 
significant. Because all the characteristics are real in 
(H), there can be various discontinuities and Johnson 
suggested this was the condition for faulting. He also 
extended his analysis to multilayers with perfect or near 
perfect slip between layers using a thin-plate approach 
to the the stability problem and considered the effect of 
having different numbers of layers in the multilayer 
stack. (This will be discussed in a companion paper.) 

In this paper, initiation of structures in multilayers is 
also analysed by examining regimes of the characteristic 
equation (28), using expressions (17), (18) and (19) for 
L, M and P. To restrict the problem to manageable 
proportions, rigid rectangular frictionless boundary con- 
ditions are assumed with the result that stability prevails 
in the (E) regime. As P/4N increases, exit from the (E) 
regime (Fig. 7), resulting in an internal instability of the 
first or second kind, is either at the (E/H) interface or the 
(E/P) interface depending upon whether Q/2N is greater 
or less than 1. The simple classification of equation (28) 
into regimes (E), (P) and (H) would appear to be a 
powerful tool for many plane-strain problems. 

INTERNAL INSTABILITY IN MEDIA WITH 
BENDING RESISTANCE 

Introducing the 'bending correction' in the equilib- 
rium equations (22), and using (9), the new characteristic 
equation [cf. equation (28)] becomes (Biot 1967) 

{ ¢-a (2M_z L)~:2. so4} P = L  1 + 7 7 + 2  + (29) 

where 

7r2b 
a -  L H  2 (30) 

and L, M and P for the case of the power law I. M. M. are 
given by (17), (18) and (19). 

The parameter a is the confined medium bending 
coefficient and H is the confinement distance (Fig. 1). In 
defining a it is also assumed that the parameter s c is given 
the geometric interpretation associated with the wave- 
length ratio of internal buckling i.e. s c = ~x/~y and that 
the wavelength in the y-direction, 2fy, equals 2H. 
Further, it is assumed that the layering extends infinitely 
in the x-direction and solutions that permit the condition 
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Fig. 8. The bending rigidity b of the fundamenta l  e lement  as a function 
of the shear modulus  ratio (competence contrast) ,  Qi/Q2 and stress 
exponent  n (=  1/m] = I/rn~) for a constant  thickness ratio al = 0.5 and 
unit layer thickness (h = 1) assuming the approximation (12) for the 

properties of  each layer. 
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Fig. 10. The confined medium bending coefficient a as a function of 
shear  modulus  ratio (competence contrast) Q~/Q:, stress exponent  n 
(= 1/rn~ = l/m2) and the total number  of competent  and incompetent  
layers in the confined multilayer H. for a constant thickness ratio a~ = 
0,5, assuming the approximation (12) for the properties of each layer. 

which Biot (1964) refers to as self-confinement are dis- 
regarded for the present investigation. 

The term a/~ a in (29) is due to the couple stress and 
plays a crucial role in that the maximum value of P does 
not coincide with ~: = 0 for first-kind instability. This 
term also contains the geometric parameters H and h. If 
h, the average layer thickness, is set equal to unity, then 
the confinement distance H is also equal to the number 
of layers. This normalizing procedure, if interpreted 
carefully, allows a comparison of the essential features 
of multilayers on all scales up to those where gravity 
becomes a significant factor. 

Consider the bending rigidity of a fundamental ele- 
ment with equal-thickness layers (al = 0.5) and equal 
stress exponents in the power law for each layer (1~rot = 
1/m2 = n).  Figure 8, which incorporates approximation 
(12) shows that higher values of the contrast in shear 
moduli Q1/Q: ( = k t / k : )  and lower values of n tend to 
increase the bending rigidity. 

For internal instability, it is also necessary to know 
whether the fundamental element occupies a large or 

\ ~  F. 

Fig. 9. Illustration of the bending constraints imposed by assuming 
different numbers  of layers in the confined multilayer. The bending 
rigidity b is identical in A and B. The confined medium bending 

coefficient, a is higher in A than in B. See text for discussion. 

small part of the total confined multilayer; that is, 
whether there are few layers (small H) or many layers 
(large H). If there are many rather than few, we may 
expect a given volume V of the confined multilayer to be 
less resistant to buckle initiation because the boundaries 
of the multilayer which inhibit shear mode buckling are 
less in evidence. The bending rigidity b of the medium is 
identical in Figs. 9(a) and (b) since the fundamental 
elements are identical. However, permissible buckling 
wavelengths are not identical for the same level of initial 
stress. It is therefore a rather than b that is incorporated 
into the buckling condition, a condition involving resist- 
ance to layer parallel shear as well as resistance to 
bending of individual components. 

In Fig. 10 the confined medium bending coefficient a 
has been plotted against Q1/Q2 for selected values of H. 
A family of curves with the same selection of n (= 1~mr = 
l/m2) values is given for each number of layers (H) 
considered, with al set equal to 0.5. Using logarithmic 
axes, the families are identical but shifted bodily to 
lower values of a for increasing values of H. For H = 2, 
the confined multilayer is equivalent to the fundamental 
element only. The bending resistance will have most 
influence on the form of the instability when the term a 
has a greater value. This occurs when there are fewer 
layers in the confined multilayer. Note that a will rarely 
exceed a value of 0.1. 

RESULTS--DOMINANT CHARACTERISTICS 

Equation (29) is the characteristic equation of internal 
instability for an anisotropic continuum of time- 
independent material properties with internal resistance 
to bending. The conjugate characteristic directions of 
heterogeneous simple shear that offer the least resist- 
ance to 'layer' parallel compression and are therefore 
the most likely to develop can be determined from this 
equation. 
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Method f ~ = A + B  (38) 

Differentiation of the bracketed term of the R.H.S.  of 
equation (29) with respect to ~ and setting the result 
equal to zero yields a sixth order equation in ~d which 
reduces to a cubic in s~,~. The positive real root ~:~ of this 
equation can be found using a combination of a trigono- 
metric method and Cardan 's  method for solving cubic 
equations. It represents the value of ~:which corresponds 
to a minimum value of P and is therefore the dominant  
characteristic ~a. Due to the physical restrictions on the 
signs of a and g (equation (35) below), there exists either 
one or three real roots of ~:d in each case. The solutions 
that are obtained for ~:d are given below 

(d= 1/f, q < 0  (31) 

(three real roots of ~:~ exist only one of which is positive), 

~d= 1/f2 q > 0  (32) 

(one real root of E 2 d exists which is always positive, two 
complex),  where 

(3; q = + (33) 

2g 
r - (34) 

a 

2 M -  c (35) 
g -  L 

and a was given in (30), 

2 
c - ( 3 6 )  

a 

- c  
fl = 2X/Z~3 cos (3//3) where cos ,/ - 2 ~  3 

(37) 

A = + X/q (39) 

It was suggested earlier that any value of E may be 
described in terms of a direction 0 = tan t ~ in degrees 
and therefore a more useful graphical parameter  at least 
for geological purposes is the dominant  characteristic 
direction 0d. These directions occur in conjugate sets 
given by +0d for the high symmetry condition of this 
' layer-parallel compression" analysis. 

The theoretical relationships presented in Fig. 11 
describe the characteristic directions at the first appear-  
ance of instability for an increasing applied stress P. By 
examining the conditions for which positive real roots of 
~d exist, it is suggested that there are two different 
instability fields of relevance to the present problem and 
that these have the same significance as the two fields 
associated with internal instability in materials assumed 
to have no bending resistance. However ,  in the analysis 
which takes into account bending resistance, the instabil- 
ity fields are not separated by the conditions M/L = 0.5. 
The condition separating the two fields can be deter- 
mined by substituting q = 0 into equation (33) and using 
(34) and (35). This gives 

g3 _ 27a (41) 
8 

Substituting equation (35) into (41) yields 

M 1 3a ~'~ 
- + - -  ( 4 2 )  

L 2 4 

which is the l ine separating the two instabi l i ty fields. Its 
approximate posit ion is indicated in Fig. I 1. 
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It will be assumed, then, that when the applied stress 
reaches the critical level for internal instability, the 
material conditions for first- and second-kind instability 
are respectively, 

M - - >  0.5 + 0.75a 1/3 
L 

M - - <  0.5 + 0.75a 1/3. 
L 

A useful parameter ,  R which will be referred to in a 
companion paper can now be defined 

R = (M/L) / (0 .5  + 0.75al/3). (43) 

It may be interpreted as an expression of the degree to 
which the roots of the characteristic equation are 
associated with first- or second-kind instability. For 
R > 1, of the three real roots of s c2, only one is positive. 
For R < 1, there is only one real root of SOd ~ which is always 
positive; the other  two are complex. 

DISCUSSION AND CONCLUSIONS 

The most important  general results of taking into 
account bending resistance in the internal instability 
analysis are summarized in Fig. 11. The complexity of 
the strain-dependent parameters M / L ,  a and P for the 
power-law elastic idealized multilayer model will be 
temporarily disregarded to simplify the discussion. It 
should however be noted that M / L  and a in the figure 
refer to values at the critical strain for incipient internal 
instability which is by differential shearing along the 
dominant characteristic directions, 0d. 

For any real composite material analysed using a 
homogeneous anisotropic continuum approach, the 
average bending rigidity could be an essential 'micro- 
structural' correction for a description of the mechanical 
stability of that continuum. If the effect of bending 
resistance is neglected, setting a = 0, there are two 
distinct branches to the curve of M / L  vs 0d. For M / L  > 
0.5, Oa = 0 and there is first-kind instability. For M / L  < 

0.5, 0d varies from 0 to 45 ° and there is second kind 
instability. These branches were shown in the curve 
given by Cosgrove (1976, fig. 5). 

For the realistic case of non-zero values of a, as a 
increases, the two originally distinct branches to the 
curve have a progressively smoother transition between 
the fields of first- and second-kind instability (Fig. 11) 
which is an important  step towards understanding the 
hybrid form of many structures initiated in multilayers. 
For example, this may help to explain a common obser- 
vation of multilayer experiments for which internal 
resistance to bending is relatively high: that the early 
development of fold limbs from internal buckles readily 
take on the appearance of localized oblique zones of 
shearing and these appear to propagate and reflect off 
the boundaries of the multilayers. Examples of such 
experiments are shown in Cobbold et al. (1971) and 
Johnson (1977). To argue whether  these concentric-like 

fold structures initiate as buckles or as localized kinks 
would be missing the point. The introduction of a into 
the analysis illustrates that the non-uniform deformation 
associated with a particular 0d is a result of relative 
contributions of first and second kind end-member 
behaviour. 0d is the preferred orientation for the 
heterogeneous simple shear deformation and the con- 
tributions from the end members indicates to what 
extent a pervasive and harmonic internal buckling pat- 
tern (i.e. of superimposed reflecting and interfering 
sinusoidal functions of heterogeneous simple shear) is 
preferred to a more localized one. The figure helps to 
explain why localized shearing is more common at angles 
of 30-45 ° to the bulk extension direction than sub-paral- 
lel to it and conversely, why pervasive harmonic patterns 
of heterogeneous simple shear are most commonly 
developed sub-parallel to the bulk extension direction. 

The value of M / L  for which the internal buckling and 
localized shearing end members are in equal proportion 
is given by the intermediate line M / L  = 0.5 + 0.75a 1/3 
(Fig. 11). This suggests then when a is large as a result of 
there being very few confined layers (see Fig. 10), shear 
localization may be expected even when M / L  is greater 
than 0.5 at instability. 

Some indication of the role played by multilayer 
parameters (e.g. material properties,  proportions and 
numbers of each layer) upon the value of M / L  was given 
in Figs 4, 5 and 10, from which the following conclusions 
can be drawn, using the result of Fig. 11. 

When M / L  at instability is much greater than the 
intermediate value (in most practical cases, 0.5), the 
initial competence contrast which is an intrinsic average 
property of the unstressed multilayer will have played 
the most important part in contributing to the degree of 
incremental anisotropy ( M / L )  at instability. This form of 
average incremental anisotropy (mostly intrinsic) is 
associated with planes that offer least resistance to shear- 
ing lying parallel to the initial compressive stress. 

The significance of nonlinear material properties 
becomes apparent when M / L  at instability is much lower 
than the intermediate value. In such cases, the individual 
layer(s) will have had incremental anisotropy induced 
during the initial uniform compression. This leads to a 
form of average incremental anisotropy which is associ- 
ated with planes that offer least resistance to shearing 
lying at 45 ° to the initial compression at the point of 
instability. 

A detailed treatment which considers the strain 
dependence of the multilayer parameters and the initial 
stress is the subject of a companion paper in which 
geologically realistic numerical examples are consi- 
dered. 

The analysis of internal instability presented in this 
paper may be adapted along the lines indicated by 
Cobbold et al. (1971) and Cosgrove (1976) to structures 
initiated during layer-parallel extension. 

The mechanical explanations for the development of 
the finite banded perturbations classified as S-bands by 
Cobbold (1977a,b) and for the initiation of internal 
structures associated with heterogeneous simple shear 
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(real characteristics) discussed in this paper are clearly 
related. Consideration of those structures that Cobbold 
classified as P or PS bands are excluded from the internal 
instability analysis by the incompressibility (or constant 
volume) condition which forbids a differential simple 
extension parallel to the band. 

Induced incremental anisotropy 

The neglected concept of induced incremental aniso- 
tropy applicable to the behaviour of isotropic materials 
deserves further consideration. Suppose a real block of 
initially isotropic material which exhibits nonlinear 
stress/strain behaviour has stresses applied to it in 
accordance with the conditions of the internal instability 
analysis. The physical consequences of the material 
nonlinearity that result from accumulating inelastic flow 
during the uniform pure shear are described mathemati- 
cally by a change in the ratio of the moduli M and L. In 
turn, the change in ratio may be described as a decrease 
in the probability that coaxial deformation will continue 
within every element of the block for a further increment 
of applied shortening. 

The type of physical phenomena that could account 
for this change upon loading is a subject beyond the 
scope of this paper. However, a suggestion that it is 
related to the physical processes that lead to the develop- 
ment of a corner at the loading point on the yield surface 
seems reasonable in the light of the current popularity of 
yield surface vertex models in applications of plasticity 
theory. (In fact, the behaviour described by the non- 
linear elastic model chosen in this paper coincides with 
that represented by the total loading behaviour of the 
vertex solid model as described by Christofferson & 
Hutchinson 1979). Vertex solid models have been 
applied to the deformation of metals (see for example 
Hutchinson & Tvergaard 1981) and to the deformation 
of rock by frictional sliding on fissure surfaces (see 
Rudnicki & Rice 1975). Physical processes giving rise to 
'non-normality' of the loading path at the yield surface 
(Needleman 1979) are thought likely to be related to 
pressure sensitive deformation mechanisms such as fric- 
tional sliding, and dilatancy. It appears then, that during 
the uniform deformation by continued stressing in the 
same direction, a selective unblocking of previously 
inactive slip systems in the polycrystal or fissured rock 
makes further coaxial deformation at all places within 
the block of material progressively less feasible. For 
example, it is not difficult to imagine that anisotropy 
would be induced in pressure sensitive dilatant materials 
with randomly oriented microcracks on which shearing 
takes place since the cracks would be subject to selective 
opening and closing during a bulk uniform stressing. 
Eventually, with continued stressing, the local effects of 
non-coaxial increments link up and lead to localized 
shearing within an inclined band or on a discrete surface. 
This is the reason why shear bands and shear fractures 
are common within isotropic rocks such as some granites 
and massive sandstones and folding is absent--there is 
nothing there to fold. Even multilayered rocks may 

deform unstably by oblique localized shearing (M/L at 
instability favours second-kind end member behaviour) 
if the layering plays a minor mechanical role. 
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